inorganic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$Na_7Mg_{13}Nd(PO_4)_{12}$

Hasna Jerbi, Mourad Hidouri* and Ben Amara Mongi

Faculté des Sciences, 5019 Monastir, Tunisia Correspondence e-mail: mourad_hidouri@yahoo.fr

Received 16 February 2012; accepted 21 April 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (Mg–O) = 0.004 Å; disorder in main residue; R factor = 0.057; wR factor = 0.107; data-to-parameter ratio = 28.2.

Investigations of the quasi-ternary system Na₃PO₄- $Mg_3(PO_4)_2$ -NdPO₄ allowed us to obtain the new phosphate heptasodium tridecamagnesium neodymium dodecakisphosphate, $Na_7Mg_{13}Nd(PO_4)_{12}$, by applying a flux method. The crystal structure is isotypic with that of the previously reported Na₇Mg₁₃Ln(PO₄)₁₂ (Ln = Eu, La) compounds. It consists of a complex three-dimensional framework built up from an NdO_8 polyhedron (*m* symmetry), an MO_6 octahedron statistically occupied by M = Mg and Na, and eight MgO_x (x =5, 6) polyhedra (four with site symmetry m), linked either directely by sharing corners, edges and faces, or by one of the eight unique PO₄ tetrahedra through common corners. Two of the PO₄ tetrahedra are statisticaly disordered over a mirror plane. The whole structure can be described as resulling from an assembly of two types of structural units, $viz \left[Mg_4MP_4O_{22}\right]_{\infty}^2$ layers extending parallel to (100) and stacked along [100], and $[Mg_4NdP_4O_{36}]^1_{\infty}$ undulating chains running along the [010] direction. The six different Na⁺ cations (five with site symmetry m and one with 0.5 occupancy) are situated in six distinct cavities delimited by the framework. The structure was refined from data of a racemic twin.

Related literature

For the synthesis and luminescent properties of new phosphates for optical devices, see: Ngee et al. (2009); Shinde et al. (2011). The title structure is isotypic with $Na_7Mg_{13}Ln(PO_4)_{12}$ (Ln = La, Eu) (Jerbi et al., 2010). For P-O distances in orthophosphates, see: Baur (1974). For Mg-O distances, see: Ben Amara et al. (1983); Jaulmes et al. (1997); Klevtsova et al. (1980), For Na–O distances, see: Donnay & Allmann (1970), and for Nd-O distances, see: Albrand et al. (1974).

Experimental

Crystal data

$Na_7Mg_{13}Nd(PO_4)_{12}$
$M_r = 1760.84$
Orthorhombic, Cmc2 ₁
a = 10.301 (3) Å
b = 15.461 (4) Å
c = 23.384 (6) Å

Data collection

Bruker–Nonius KappaCCD	44522 measured reflections
diffractometer	11948 independent reflections
Absorption correction: analytical	8244 reflections with $I > 2\sigma(I)$
(Alcock, 1970)	$R_{\rm int} = 0.103$
$T_{\min} = 0.716, T_{\max} = 0.878$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.057$	$\Delta \rho_{\rm max} = 2.37 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.107$	$\Delta \rho_{\rm min} = -2.23 \text{ e} \text{ Å}^{-3}$
S = 1.05	Absolute structure: Flack (1983),
11948 reflections	5847 Friedel pairs
424 parameters	Flack parameter: 0.257 (9)
1 restraint	

 $V = 3724.2 (17) \text{ Å}^3$

Mo Ka radiation

 $0.40 \times 0.22 \times 0.17 \text{ mm}$

 $\mu = 2.38 \text{ mm}^-$

T = 293 K

Z = 4

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997): program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2593).

References

- Albrand, K. R., Attig, R., Fenner, J., Jeser, J. P. & Mootz, D. (1974). Mater. Res. Bull. 212, 129-140.
- Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 271. Copenhagen: Munksgaard.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.
- Ben Amara, M., Vlasse, M., Olazcuaga, R., Le Flem, G. & Hagenmuller, P. (1983). Acta Cryst. C39, 936-939.
- Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.
- Donnay, G. & Allmann, R. (1970). Am. Mineral. 55, 1003-1015.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jaulmes, S., Elfzkir, A., Quarton, M., Brunet, F. & Chopin, C. (1997). J. Solid State Chem. 129, 341-345.
- Jerbi, H., Hidouri, M., Glorieux, B., Darriet, J., Garcia, A., Jubera, V. & Ben Amara, M. (2010). J. Solid State Chem. 183, 1752-1760.
- Klevtsova, R. F., Kim, V. G. & Klevtsov, P. N. (1980). Kristallografiya, 25, 1148-1154.
- Ngee, H. L., Hatsumori, T., Kazuyoshi, U., Tadashi, I., Toda, K. & Sato, M. (2009). Phys. Proc. 2, 171-183.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shinde, K. N., Dhoble, S. J. & Kumar, A. (2011). J. Lumin. 131, 931-937.

supplementary materials

Acta Cryst. (2012). E68, i44 [doi:10.1107/S1600536812017850]

$Na_7Mg_{13}Nd(PO_4)_{12}$

Hasna Jerbi, Mourad Hidouri and Ben Amara Mongi

Comment

In recent years, the growing interest in new luminophores for light emitting diodes (LEDs) let to synthesis and characterization of news inorganic phosphates for use in next generation optical devices (Ngee *et al.*, 2009; Shinde *et al.* 2011). The knowledge of the crystal structure is necessary to understand the luminescence properties of the synthesized materials. Bearing this in mind, we recently started a systematic investigation of rare earth phosphates belonging to the quasi-ternary Na₃PO₄–Mg₃(PO₄)₂–*Ln*PO₄ (*Ln* is a lanthanoid) systems. As part of this ongoing study, the new phosphate Na₇Mg₁₃Nd(PO₄)₁₂ has been isolated in form of single crystals by applying a flux method. The underlying crystal structure is isotypic with the previously La and Eu analogues (Jerbi *et al.*, 2010).

The complex framework structure of the title compound is displayed in Fig. 1. It consists of an assembly of NdO₈, MO₆ (M = 0.5 Mg + 0.5 Na) and MgO_x (x = 5, 6) polyhedra which are linked either directly through common corners, edges or faces, or by the phosphate groups. The Na⁺ cations are located within 6 crystallographically distinct cavities delimited by the framework.

As shown in Fig. 2, the whole structure can be decomposed into layers. $[Mg_4MP_4O_{22}]_{\infty}$ layers extend parallel to (100) and are stacked along [100]. These layers are interconnected by $[Mg_4NdP_4O_{36}]_{\infty}$ undulating chains which run along the [010] direction. The $[Mg_4MP_4O_{22}]_{\infty}$ layer is made up of $[Mg_2P_2O_{12}]_{\infty}$ chains alternating with $[Mg_2MP_2O_{14}]_{\infty}$ ribbons, both spreading along the [010] direction. The $[Mg_4NdP_4O_{36}]_{\infty}$ undulating chain (Fig. 4) is built from NdO₈, Mg(1)O₅ and Mg(4)O₆ polyhedra and Mg₂O₉ bioctahedral units of face-sharing MgO₆ octahedra. Such units are linked to each other by means of the PO₄ tetrahedra through common corners. The connection of the layers and the undulating chains induces a rigid skeleton which forms six distinct cavities, occupied by the Na⁺ cations.

The environment of the Nd³⁺ site consists of eight O atoms with Nd—O distances in the range 2.385 (5) - 2.529 (3) Å and a mean distance of 2.499 Å, close to that of 2.484 Å, observed for the 8-coordinate Nd³⁺ in NdP₅O₁₄ (Albrand *et al.*, 1974). The M (M = 0.5 Mg + 0.5 Na) site is formally 8-coordinated. However, due to the statistically disordered phosphate tetrahedra (P7 with O73*x* and O74*x*; P8 with O83*x* and O(84)*x*), the effective number of O atoms surrounding the M is 6 (Fig. 5), and the average M—O distance is 2.175 Å. This is less than 2.230 Å as reported for the M (M = 0.5Mg + 0.5Na) site with a similar coordination in the molybdate Na₂Mg₅(MoO₄)₆ (Klevtsova *et al.*, 1980). The eight distinct Mg²⁺ sites display various coordination polyhedra. Mg2 to Mg5 are 6-coordinate with Mg—O distances in the range 1.961 (6) - 2.223 (4) Å leading to an overall distance of 2.097 Å, slightly lower but consistent with that of 2.14 Å as reported for octahedrally surrounded Mg²⁺ ions in Mg₃(PO₄)₂ (Jaulmes *et al.*, 1997). Mg1, Mg6, Mg7 and Mg8 are 5-coordinate with Mg—O distances in the range 1.925 (9) - 2.348 (8) Å, leading to an overall value of 2.066 Å, close to that 2.080 Å reported for the likewise 5-coordinate Mg²⁺ ion in NaMg₄(PO₄)₃ (Ben Amara *et al.*, 1983). The P—O distances within the PO₄ tetrahedra are in the range 1.507 (6) - 1.563 (4) Å with an overall value of 1.533 Å, nearly the same of 1.537 Å as predicted by Baur for the orthophosphate group (Baur, 1974).

As already described above, the phosphate groups involving the atoms P7 and P8 are statistically disordered, occupying two positions which are slightly displaced from the (0,y,z) mirror plane. This leads to two orientations for each tetrahedron, namely a left and right orientation (Fig. 5). This behaviour is attributed to the need to accommodate the environments of neighboring *Ln* and *M* sites. For describing the environments of the Na⁺ cations Na—O distances below $L_{max} = 3.13$ Å, as suggested by Donnay and Allmann (1970) were taken into account. Hence their coordination numbers range from 5 to 10 with Na—O distances scattering from 1.968 (9) for the statistically disordered Na site to 2.979 (6) Å.

Experimental

Single crystals of the Na₇Mg₁₃Nd(PO₄)₁₂ phoshate were grown in a flux of sodium molybdate Na₂MoO₄ starting from mixtures of Na₂CO₃, MgCO₃, Nd₂O₃, NH₄H₂PO₄ and Na₂MoO₄·2H₂O in a molar ratio of 2.5:14:0.5:12:6. This mixture was ground in an agate mortar and heated in a platinum crucible for 24 h at 673 K to expel H₂O, CO₂ and NH₃. After being reground, the product was molten for 2 h at 1273 K and subsequently cooled down to 773 K with a 10Kh⁻¹ rate, after which the furnace was turned off. Hexagonally shaped crystals were obtained by washing the solidified product with warm water. Elemental analysis by ICP indicated the exclusive presence of Na, Nd, Mg and P in an atomic ratio of Na: Mg: Nd: P = 7.4:13.2: 0.95:12.

Refinement

During refinement it turned out that each of the P7, P8, O72, O73, O74, O82, O83, O84 and Na6 atoms is statistically disordered over two positions (left and right), symmetrically related by the (0,y,z) mirror plane. These positions cannot be filled simultaneously. The MO₆ site is likewise disordered and occupied statistically by Mg and Na atoms. The remaining highest and lowest electron densities are 2.37 e.Å⁻³ 0.36 Å from O84*x* and -2.33 e.Å⁻³ 0.03 Å from Nd, respectively. The crystal under investigation was an inversion twin with an approximate ratio of the twin domains of 3:1.

Computing details

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK* and *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

Projection of the structure along the [100] direction.

Figure 2

Projection along the [001] direction showing the $[Mg_4MP_4O_{22}]_{\infty}$ layers and the $[Mg_4NdP_4O_{36}]_{\infty}$ undulating chains.

Figure 4 $One \ [Mg_4NdP_4O_{36}]_{\infty} \ undulating \ chain$

Figure 5

The left and right orientations of the $(P7O_4)x$ and $(P8O_4)x$ tetrahedra around the *M* site. Displacement ellipsoids are drawn at the 50% probability level.

heptasodium tridecamagnesium neodymium dodecakisphosphate

Crystal data

Na ₇ Mg ₁₃ Nd(PO ₄) ₁₂	$D_{\rm x} = 3.140 \text{ Mg m}^{-3}$
$M_r = 1760.84$	Melting point: 1007 K
Orthorhombic, $Cmc2_1$	Mo <i>Ka</i> radiation, $\lambda = 0.71069 \text{ Å}$
Hall symbol: C 2c -2	Cell parameters from 44599 reflections
a = 10.301 (3) A	$\theta = 2.4 - 40^{\circ}$
b = 15.461 (4) Å	$\mu = 2.38 \text{ mm}^{-1}$
c = 23.384 (6) Å	T = 293 K
$V = 3/24.2 (17) \text{ A}^3$ Z = 4 F(000) = 3428	Parallelepiped, purple $0.40 \times 0.22 \times 0.17 \text{ mm}$
Data collection	
Bruker–Nonius KappaCCD	44522 measured reflections
diffractometer	11948 independent reflections
Radiation source: fine-focus sealed tube	8244 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.103$
non–profiled ω scans	$\theta_{max} = 40.0^{\circ}, \ \theta_{min} = 3.2^{\circ}$
Absorption correction: analytical	$h = -12 \rightarrow 18$
(Alcock, 1970)	$k = -27 \rightarrow 27$
$T_{min} = 0.716, T_{max} = 0.878$	$l = -42 \rightarrow 42$
Refinement	

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.107$ S = 1.0511948 reflections 424 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $w = 1/[\sigma^2(F_o^2) + (0.0124P)^2 + 42.9558P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 2.37$ e Å⁻³ $\Delta\rho_{min} = -2.23$ e Å⁻³ Absolute structure: Flack (1983), 5847 Friedel pairs Flack parameter: 0.257 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Nd	0.0000	0.54408 (2)	0.000015 (13)	0.00904 (5)	
P1	0.21976 (9)	0.43115 (7)	0.05989 (4)	0.00612 (16)	
011	0.1824 (3)	0.3576 (2)	0.09995 (13)	0.0116 (6)	
012	0.3671 (3)	0.4462 (2)	0.05621 (14)	0.0129 (6)	
013	0.1558 (3)	0.41806 (18)	0.00077 (17)	0.0125 (5)	
014	0.1526 (3)	0.5162 (2)	0.08102 (14)	0.0112 (5)	
P2	0.74694 (10)	0.46442 (7)	0.22216 (5)	0.00978 (18)	
O21	0.7715 (4)	0.5517 (2)	0.19519 (16)	0.0232 (8)	
O22	0.7106 (3)	0.4816 (2)	0.28494 (15)	0.0191 (7)	
O23	0.6391 (3)	0.4113 (2)	0.19233 (14)	0.0125 (6)	
O24	0.8668 (3)	0.4038 (2)	0.21746 (13)	0.0107 (5)	
P3	0.24602 (11)	0.70154 (7)	0.98592 (4)	0.00913 (18)	
031	0.2995 (3)	0.6688 (2)	0.04252 (14)	0.0168 (7)	
032	0.1777 (4)	0.6272 (2)	0.95352 (15)	0.0170 (7)	
O33	0.3605 (3)	0.7387 (2)	0.95155 (16)	0.0153 (6)	
O34	0.1511 (3)	0.7784 (2)	0.98766 (14)	0.0160 (7)	
P4	0.23934 (11)	0.72710 (8)	0.81954 (5)	0.0116 (2)	
O41	0.3634 (4)	0.6820 (3)	0.8390 (2)	0.0337 (12)	
O42	0.2489 (5)	0.7603 (3)	0.75815 (16)	0.0286 (9)	
O43	0.1310 (3)	0.6600(2)	0.82915 (14)	0.0143 (6)	
O44	0.2043 (4)	0.8076 (2)	0.85537 (15)	0.0210 (8)	
P5	0.0000	0.72322 (10)	0.11586 (7)	0.0069 (3)	
051	0.0000	0.6619 (3)	0.0654 (2)	0.0144 (8)	
O52	0.0000	0.8177 (3)	0.09809 (19)	0.0105 (8)	
O53	0.1213 (3)	0.7066 (2)	0.15281 (15)	0.0132 (6)	
P6	0.5000	0.64818 (10)	0.16991 (6)	0.0060 (2)	
O61	0.6206 (3)	0.7003 (2)	0.15437 (17)	0.0180 (7)	
O62	0.5000	0.5682 (3)	0.1316 (2)	0.0294 (14)	
O63	0.5000	0.6231 (4)	0.2330 (2)	0.0169 (10)	
P7	0.02504 (19)	0.55827 (15)	0.36368 (10)	0.0078 (5)	0.50
O71	0.0000	0.5300 (3)	0.3018 (2)	0.0166 (9)	
O72X	-0.020 (3)	0.6490 (5)	0.3742 (4)	0.037 (6)	0.50
O73X	0.0621 (7)	0.4980 (6)	0.3999 (3)	0.0252 (18)	0.50
O74X	0.1652 (7)	0.5446 (5)	0.3848 (3)	0.0177 (12)*	0.50
P8	0.5147 (8)	0.53079 (15)	0.39974 (9)	0.0120 (12)	0.50
O81	0.5000	0.5645 (4)	0.3388 (2)	0.0255 (13)	
O82X	0.4470 (6)	0.5929 (4)	0.4417 (3)	0.0130 (12)	0.50

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

O83X	0.3373 (6)	0.5306 (4)	0.4107 (3)	0.0141 (12)	0.50
O84X	0.5429 (8)	0.4411 (6)	0.4069 (4)	0.037 (2)*	0.50
Mg1	0.0000	0.40172 (15)	0.28024 (9)	0.0100 (4)	
Mg2	0.5000	0.43819 (13)	0.13099 (9)	0.0072 (4)	
Mg3	0.0000	0.85120 (14)	0.01707 (9)	0.0082 (4)	
Mg4	0.0000	0.78245 (17)	0.39476 (10)	0.0115 (4)	
Mg5	0.76130 (15)	0.29805 (10)	0.17575 (7)	0.0091 (3)	
Mg6	0.2319 (3)	0.63904 (12)	0.43096 (8)	0.0284 (5)	
Mg7	0.34561 (18)	0.60958 (11)	0.28670 (8)	0.0187 (4)	
Mg8	0.24440 (18)	0.61726 (10)	0.11851 (7)	0.0155 (3)	
Mg	0.2460 (2)	0.56877 (13)	0.87518 (8)	0.0254 (5)	0.50
Na	0.2460 (2)	0.56877 (13)	0.87518 (8)	0.0254 (5)	0.50
Na1	0.0000	0.0937 (2)	0.78091 (13)	0.0195 (6)	
Na2	0.0000	0.2634 (2)	0.40137 (14)	0.0226 (7)	
Na3	0.0000	0.4531 (3)	0.14512 (14)	0.0235 (8)	
Na4	0.5000	0.4330 (2)	0.52265 (14)	0.0230 (6)	
Na5	0.5000	0.7765 (2)	0.05347 (18)	0.0352 (9)	
Na6	0.9685 (5)	0.6495 (4)	0.2386 (2)	0.0455 (19)	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Nd	0.00955 (11)	0.00944 (11)	0.00815 (11)	0.000	0.000	0.00003 (13)
P1	0.0045 (4)	0.0058 (4)	0.0080 (4)	-0.0004 (3)	-0.0007 (3)	0.0007 (3)
011	0.0116 (14)	0.0103 (14)	0.0129 (14)	-0.0008 (11)	-0.0013 (11)	0.0024 (11)
012	0.0077 (12)	0.0131 (15)	0.0180 (14)	0.0004 (10)	-0.0045 (11)	0.0040 (12)
013	0.0140 (12)	0.0133 (12)	0.0101 (11)	0.0056 (9)	-0.0042 (14)	-0.0014 (15)
O14	0.0107 (13)	0.0078 (12)	0.0152 (14)	0.0017 (10)	0.0009 (11)	-0.0026 (11)
P2	0.0077 (4)	0.0110 (5)	0.0107 (4)	0.0020 (4)	0.0012 (3)	0.0015 (4)
O21	0.032 (2)	0.0138 (16)	0.0238 (18)	-0.0055 (15)	-0.0075 (15)	0.0097 (14)
O22	0.0187 (16)	0.0227 (18)	0.0158 (16)	0.0043 (13)	0.0081 (13)	-0.0005 (14)
O23	0.0083 (13)	0.0147 (15)	0.0146 (15)	0.0024 (11)	0.0001 (10)	0.0006 (12)
O24	0.0075 (12)	0.0174 (14)	0.0073 (12)	0.0037 (11)	0.0006 (10)	0.0014 (11)
P3	0.0102 (4)	0.0082 (4)	0.0090 (4)	-0.0014 (3)	0.0035 (4)	0.0002 (3)
O31	0.0216 (17)	0.0185 (16)	0.0102 (14)	-0.0027 (13)	0.0001 (12)	0.0042 (12)
O32	0.0230 (17)	0.0127 (15)	0.0152 (15)	-0.0051 (13)	-0.0003 (13)	-0.0008 (12)
O33	0.0140 (14)	0.0133 (15)	0.0187 (15)	0.0007 (12)	0.0105 (12)	0.0022 (12)
O34	0.0102 (13)	0.0164 (15)	0.0213 (17)	0.0026 (11)	0.0038 (11)	-0.0065 (12)
P4	0.0090 (4)	0.0146 (5)	0.0113 (5)	0.0012 (4)	-0.0023 (4)	-0.0070 (4)
O41	0.0142 (16)	0.044 (3)	0.043 (2)	0.0165 (17)	-0.0161 (17)	-0.036 (2)
O42	0.041 (2)	0.031 (2)	0.0138 (18)	-0.0208 (19)	0.0055 (17)	-0.0077 (15)
O43	0.0123 (13)	0.0217 (17)	0.0088 (13)	-0.0002 (12)	-0.0021 (11)	-0.0017 (12)
O44	0.028 (2)	0.0195 (18)	0.0151 (16)	0.0066 (15)	-0.0036 (14)	-0.0102 (13)
P5	0.0079 (6)	0.0051 (6)	0.0076 (6)	0.000	0.000	0.0011 (5)
O51	0.021 (2)	0.0100 (19)	0.012 (2)	0.000	0.000	-0.0024 (16)
O52	0.015 (2)	0.0055 (18)	0.0110 (19)	0.000	0.000	0.0003 (15)
O53	0.0095 (14)	0.0115 (15)	0.0185 (15)	-0.0013 (11)	-0.0040 (11)	0.0006 (12)
P6	0.0053 (6)	0.0062 (6)	0.0065 (6)	0.000	0.000	0.0004 (5)
O61	0.0110 (15)	0.0175 (17)	0.0255 (19)	-0.0056 (12)	-0.0036 (13)	0.0066 (14)

supplementary materials

O62	0.071 (5)	0.006 (2)	0.012 (2)	0.000	0.000	-0.0005 (18)
063	0.019 (2)	0.023 (3)	0.009 (2)	0.000	0.000	0.0034 (18)
P7	0.0061 (12)	0.0098 (9)	0.0075 (8)	0.0002 (6)	0.0002 (6)	-0.0024 (7)
071	0.027 (3)	0.014 (2)	0.0083 (19)	0.000	0.000	-0.0022 (16)
O72X	0.051 (18)	0.012 (3)	0.047 (5)	0.011 (5)	0.000 (5)	-0.012 (3)
O73X	0.019 (3)	0.049 (5)	0.008 (3)	0.021 (3)	0.001 (2)	0.007 (3)
P8	0.012 (4)	0.0146 (9)	0.0094 (7)	-0.0055 (11)	0.0032 (9)	-0.0058 (6)
O81	0.021 (3)	0.049 (4)	0.007 (2)	0.000	0.000	-0.007 (2)
O82X	0.014 (3)	0.018 (3)	0.007 (3)	-0.001 (2)	-0.004 (2)	-0.006 (2)
O83X	0.009 (3)	0.011 (3)	0.023 (3)	-0.004 (2)	0.007 (2)	-0.003 (2)
Mg1	0.0107 (9)	0.0119 (10)	0.0072 (9)	0.000	0.000	0.0004 (8)
Mg2	0.0089 (9)	0.0069 (9)	0.0057 (8)	0.000	0.000	-0.0012 (7)
Mg3	0.0084 (9)	0.0100 (9)	0.0063 (8)	0.000	0.000	0.0006 (7)
Mg4	0.0047 (8)	0.0212 (12)	0.0085 (9)	0.000	0.000	0.0029 (8)
Mg5	0.0094 (6)	0.0081 (6)	0.0097 (6)	0.0007 (5)	0.0006 (5)	0.0002 (5)
Mg6	0.0638 (15)	0.0095 (8)	0.0119 (8)	0.0020 (9)	0.0194 (9)	0.0014 (6)
Mg7	0.0232 (9)	0.0122 (8)	0.0207 (9)	-0.0036 (6)	0.0076 (7)	-0.0063 (7)
Mg8	0.0256 (8)	0.0089 (7)	0.0121 (7)	-0.0053 (6)	0.0074 (6)	-0.0026 (6)
Mg	0.0535 (14)	0.0087 (8)	0.0140 (8)	0.0107 (8)	-0.0124 (9)	-0.0020 (7)
Na	0.0535 (14)	0.0087 (8)	0.0140 (8)	0.0107 (8)	-0.0124 (9)	-0.0020 (7)
Na1	0.0121 (12)	0.0292 (17)	0.0172 (14)	0.000	0.000	-0.0063 (13)
Na2	0.0154 (14)	0.0356 (19)	0.0167 (15)	0.000	0.000	0.0073 (14)
Na3	0.0152 (15)	0.043 (2)	0.0125 (14)	0.000	0.000	0.0112 (14)
Na4	0.0312 (17)	0.0170 (14)	0.0208 (15)	0.000	0.000	-0.0035 (12)
Na5	0.0243 (17)	0.0295 (19)	0.052 (2)	0.000	0.000	-0.0176 (17)
Na6	0.047 (5)	0.057 (3)	0.032 (3)	0.009 (3)	0.000 (2)	0.029 (3)

Geometric parameters (Å, °)

Nd051	2.379 (5)	P8—Mg6 ^{vii}	3.185 (7)
Nd—O32 ⁱ	2.487 (4)	P8—Na ^v	3.219 (7)
Nd—O32 ⁱⁱ	2.487 (4)	O81—P8 ^{vii}	1.525 (6)
Nd—O14 ⁱⁱⁱ	2.499 (3)	O81—Mg7	2.121 (4)
Nd014	2.499 (3)	O81—Mg7 ^{vii}	2.121 (4)
Nd—O73X ^{iv}	2.513 (7)	O81—Na1 ^x	2.796 (7)
$Nd-O73X^{v}$	2.513 (7)	O82X—O82X ^{vii}	1.091 (13)
Nd—O13 ⁱⁱⁱ	2.525 (3)	O82X—P8 ^{vii}	1.428 (7)
Nd-013	2.525 (3)	O82X—O83X	1.652 (9)
Nd—P1 ⁱⁱⁱ	3.1834 (12)	O82X—Mg3 ^{xiii}	2.037 (6)
Nd—P1	3.1834 (12)	O82X—Mg6	2.342 (7)
Nd—Na3	3.673 (3)	O82X—Na2 ^{xvi}	2.853 (8)
P1011	1.523 (3)	O83X—P8 ^{vii}	1.546 (10)
P1—O12	1.538 (3)	O83X—Na ^v	1.984 (7)
P1—O13	1.545 (4)	O83X—Mg ^v	1.984 (7)
P1—014	1.565 (3)	O83X—Mg6	2.052 (7)
P1—Na3	3.035 (3)	O84X—O84X ^{vii}	0.885 (17)
P1—Mg8	3.197 (2)	O84X—P8 ^{vii}	1.517 (10)
P1—Na5 ^{vi}	3.296 (3)	O84X—Na ^{ix}	2.303 (9)
O11—Mg5 ^{vii}	2.079 (3)	O84X—Mg ^{ix}	2.303 (9)
O11—Na5 ^{vi}	2.507 (4)	O84X—Mg4 ^{viii}	2.509 (10)

O11—Na3	2.613 (4)	O84X—Na4	2.745 (10)
O12—Mg3 ^{viii}	2.206 (4)	Mg1—O24 ^{xviii}	2.010 (3)
O12—Mg2	2.224 (3)	Mg1—O24 ^{vii}	2.010 (3)
O12—Na4 ^{ix}	2.445 (4)	Mg1—O43 ^{iv}	2.010 (4)
O13—Mg6 ^v	2.015 (4)	Mg1—O43 ^v	2.010 (4)
O13—Na5 ^{vi}	2.981 (5)	Mg1—P2 ^{xviii}	3.0952 (17)
O14—Mg8	2.026 (3)	Mg1—P2 ^{vii}	3.0952 (17)
O14—Na3	2.381 (4)	Mg1—P7 ⁱⁱⁱ	3.119 (3)
P2—O21	1.511 (4)	Mg1—Na3	3.258 (4)
P2—O22	1.538 (4)	Mg1—Na ^v	3.400 (3)
P2—O23	1.547 (4)	Mg1—Mg ^v	3.400 (3)
P2—O24	1.554 (3)	Mg2—O52 ^{viii}	2.015 (5)
P2—Mg5	2.796 (2)	Mg2—O23 ^{vii}	2.070 (4)
P2—Mg7 ^{vii}	2.868 (2)	Mg2—O12 ^{vii}	2.224 (3)
P2—Na1 ^x	3.027 (2)	Mg2—Mg3 ^{viii}	2.984 (3)
P2—Mg1 ^{xi}	3.0952 (17)	Mg2—Na4 ^{ix}	3.222 (4)
P2—Na3 ^{xi}	3.174 (2)	Mg2—Na1 ^x	3.540 (4)
O21—Mg8 ^{vii}	2.066 (4)	Mg2—Mg5 ^{vii}	3.610 (2)
O21—Mg7 ^{vii}	2.614 (5)	Mg2—Mg5	3.610(2)
O21—Na6	2.727 (7)	Mg3—O82X ^{xxi}	2.037 (6)
O22—Mg7 ^{vii}	2.062 (4)	Mg3—O82X ^{xxii}	2.037 (6)
O22—Na ^{ix}	2.293 (4)	Mg3—O34 ⁱ	2.040 (3)
O22—Mg ^{ix}	2.293 (4)	Mg3—O34 ⁱⁱ	2.040 (3)
O22—Na1 ^x	2.464 (4)	Mg3—O12 ^{xxiii}	2.206 (4)
O23—Mg2	2.070 (4)	Mg3—O12 ^{xix}	2.206 (4)
O23—Mg5	2.191 (4)	Mg3—Mg2 ^{xix}	2.984 (3)
O23—Na1 ^x	2.520 (4)	Mg3—Na2 ^{iv}	3.234 (4)
O24—Mg1 ^{xi}	2.010 (3)	Mg3—Na4 ^{xxii}	3.338 (4)
O24—Mg5	2.192 (4)	Mg3—Mg6 ^{xxi}	3.421 (3)
O24—Na3 ^{xi}	2.308 (4)	Mg4—O33 ^{xxi}	1.984 (4)
P3—O31 ^{xii}	1.521 (3)	Mg4—O33 ^{xxii}	1.984 (4)
Р3—О33	1.538 (3)	Mg4—O41 ^{xxi}	1.995 (4)
P3—O34	1.540 (3)	Mg4—O41 ^{xxii}	1.995 (4)
P3—O32	1.546 (4)	Mg4—O72X ⁱⁱⁱ	2.129 (8)
P3—Mg6 ^{xiii}	2.789 (2)	Mg4—O84X ^{xix}	2.509 (10)
P3—Na2 ^{xiv}	3.260 (2)	Mg4—O84X ^{xxiii}	2.509 (10)
P3—Na5 ^{xii}	3.269 (3)	Mg4—Na1 ^{iv}	3.279 (4)
P3—Na4 ^{xv}	3.451 (2)	Mg4—Mg6 ⁱⁱⁱ	3.368 (3)
O31—P3 ⁱⁱ	1.521 (3)	Mg4—Mg6	3.368 (3)
O31—Mg8	2.029 (4)	Mg4—Mg ^{xxii}	3.514 (3)
O31—Na4 ^{ix}	2.638 (4)	Mg5—O61 ^{xxiv}	2.004 (4)
O31—Na5	2.665 (4)	Mg5—O11 ^{vii}	2.079 (3)
O32—Mg	2.160 (4)	Mg5—O53 ^{viii}	2.089 (4)
O32—Nd ^{xii}	2.487 (4)	Mg5—O42 ^{ix}	2.130 (4)
O32—Na2 ^{xiv}	2.775 (5)	Mg5—Mg8 ^{viii}	3.104 (2)
O33—Mg4 ^{xiii}	1.984 (4)	Mg5—Na3 ^{xi}	3.508 (3)
O33—Mg6 ^{xiii}	2.171 (4)	Mg5—Na6 ^{xxiv}	3.612 (5)
O33—Na5 ^{xii}	2.844 (5)	Mg5—Na5 ^{viii}	3.786 (4)
O34—Mg3 ^{xii}	2.040 (3)	Mg6—O13 ^{xxv}	2.015 (4)

O34—Mg6 ^{xiiii}	2.200 (4)	Mg6—O44 ^{xxii}	2.058 (4)
O34—Na2 ^{xiv}	2.629 (4)	Mg6—O33 ^{xxii}	2.171 (4)
P4—O41	1.525 (4)	Mg6—O34 ^{xxii}	2.200 (4)
P4—O42	1.528 (4)	Mg6—O72X ⁱⁱⁱ	2.56 (2)
P4—O43	1.540 (4)	Mg6—P3 ^{xxii}	2.789 (2)
P4—O44	1.543 (4)	Mg6—P8 ^{vii}	3.185 (7)
P4—Mg	2.773 (2)	Mg7—O22 ^{vii}	2.062 (4)
P4—Mg7 ^{xiii}	2.780 (2)	Mg7—O44 ^{xxii}	2.117 (4)
P4—Na2 ^{xiv}	3.124 (2)	Mg7—O42 ^{xxii}	2.332 (5)
O41—Mg4 ^{xiii}	1.995 (4)	Mg7—O21 ^{vii}	2.614 (5)
O41—Mg	2.289 (6)	Mg7—P4 ^{xxii}	2.780 (2)
O41—Na1 ^{xvi}	2.386 (5)	Mg7—P2 ^{vii}	2.868 (2)
O42—Mg5 ^{xv}	2.130 (4)	Mg7—Mg7 ^{vii}	3.181 (4)
O42—Mg7 ^{xiii}	2.332 (5)	Mg7—Na6 ^{vii}	3.481 (6)
O42—Na6 ^{xvii}	2.696 (7)	Mg7—Na1 ^x	3.525 (4)
O43—Mg1 ^{xiv}	2.010 (4)	Mg7—Mg ^v	3.597 (3)
O43—Mg	2.133 (4)	Mg8—O21 ^{vii}	2.066 (4)
O43—Na2 ^{xiv}	2.465 (4)	Mg8—O61 ^{vii}	2.070 (4)
O44—Mg6 ^{xiii}	2.058 (4)	Mg8—Mg5 ^{xix}	3.104 (2)
O44—Mg7 ^{xiii}	2.117 (4)	Mg8—Na4 ^{ix}	3.544 (3)
O44—Na2 ^{xiv}	2.606 (5)	Mg8—Na6 ^{vii}	3.598 (6)
P5—O51	1.513 (5)	Mg—O74X ^{xxv}	1.954 (8)
P5—O52	1.519 (5)	Mg—O83X ^{xxv}	1.984 (7)
P5—O53 ⁱⁱⁱ	1.541 (3)	Mg—O73X ^{xxv}	2.233 (7)
P5—O53	1.541 (3)	Mg—O22 ^{xv}	2.293 (4)
P5—Mg8 ⁱⁱⁱ	3.004 (2)	Mg—O84X ^{xv}	2.303 (9)
P5—Mg8	3.004 (2)	Mg—P8 ^{xv}	2.962 (7)
P5—Mg3	3.042 (3)	Mg—P7 ^{xxv}	3.018 (3)
P5—Na6 ^{vii}	3.106 (5)	Mg—Mg1 ^{xiv}	3.400 (3)
P5—Na6 ^{xviii}	3.106 (5)	Na1—O41 ^{xxvi}	2.386 (5)
O52—Mg3	1.964 (5)	Na1—O41 ^{vi}	2.386 (5)
O52—Mg2 ^{xix}	2.015 (5)	Na1—O22 ^{xxvii}	2.464 (4)
O53—Mg8	2.040 (4)	Na1—O22 ^{xxviii}	2.464 (4)
O53—Mg5 ^{xix}	2.089 (4)	Na1—O23 ^{xxvii}	2.520 (4)
O53—Na6 ^{vii}	2.380 (6)	Na1—O23 ^{xxviii}	2.520 (4)
O53—Na6 ^{xviii}	2.699 (6)	Na1—O81 ^{xxvii}	2.796 (7)
P6—O61 ^{vii}	1.524 (4)	Na1—P2 ^{xxvii}	3.027 (2)
P6—O61	1.524 (4)	Na1—P2 ^{xxviii}	3.027 (2)
P6—O62	1.526 (5)	Na1—Mg4 ^{xiv}	3.279 (4)
P6—O63	1.526 (5)	Na1—P8 ^{xxviii}	3.384 (4)
P6—Mg8	2.934 (2)	Na1—P8 ^{xxvii}	3.384 (4)
P6—Mg8 ^{vii}	2.934 (2)	Na2—O43 ^{iv}	2.465 (4)
P6—Na5	3.369 (5)	Na2—O43 ^v	2.465 (4)
O61—Mg5 ^{xx}	2.004 (4)	Na2—O44 ^{iv}	2.606 (5)
O61—Mg8 ^{vii}	2.070 (4)	Na2—O44 ^v	2.606 (5)
O61—Na5	2.915 (6)	Na2—O34 ^{iv}	2.629 (4)
O62—Mg2	2.011 (6)	Na2—O34 ^v	2.629 (4)
O62—Na4 ^{ix}	2.548 (6)	Na2—O32 ^v	2.775 (5)
O62—Mg8	2.757 (3)	Na2—O32 ^{iv}	2.775 (5)

O62—Mg8 ^{vii}	2.757 (3)	Na2—O82X ^{vi}	2.853 (8)
O63—Mg7 ^{vii}	2.037 (4)	Na2—O82X ^{xxvi}	2.853 (8)
O63—Mg7	2.037 (4)	Na2—P4 ^{iv}	3.124 (2)
P7—P7 ⁱⁱⁱ	0.516 (4)	Na2—P4 ^v	3.124 (2)
P7—O73X	1.316 (8)	Na3—O24 ^{vii}	2.308 (4)
P7—O72X ⁱⁱⁱ	1.424 (7)	Na3—O24 ^{xviii}	2.308 (4)
P7—O72X	1.497 (12)	Na3—O14 ⁱⁱⁱ	2.381 (4)
P7—O71	1.534 (5)	Na3—O11 ⁱⁱⁱ	2.613 (4)
P7—O74X	1.540 (7)	Na3—P1 ⁱⁱⁱ	3.035 (3)
P7—O73X ⁱⁱⁱ	1.546 (7)	Na3—P2 ^{vii}	3.174 (2)
P7—O74X ⁱⁱⁱ	2.032 (7)	Na3—P2 ^{xviii}	3.174 (2)
P7—Mg6	2.929 (3)	Na3—Na5 ^{vi}	3.470 (5)
P7—Na ^v	3.018 (3)	Na4—O12 ^{xv}	2.445 (4)
P7—Mg ^v	3.018 (3)	Na4—O12 ^{xxv}	2.445 (4)
P7—Mg1	3.119 (3)	Na4—O62 ^{xv}	2.548 (6)
O71—P7 ⁱⁱⁱ	1.534 (5)	Na4—O31 ^{xxv}	2.638 (4)
O71—Mg1	2.046 (5)	Na4—O31 ^{xv}	2.638 (4)
O71—Na6 ^{xviii}	2.387 (7)	Na4—O84X ^{vii}	2.745 (10)
O71—Na6 ^{vii}	2.387 (7)	Na4—Mg2 ^{xv}	3.222 (4)
O72X—O72X ⁱⁱⁱ	0.41 (6)	Na4—P8 ^{vii}	3.251 (4)
O72X—P7 ⁱⁱⁱ	1.424 (7)	Na4—Na5 ^{xv}	3.319 (5)
O72X—Mg4	2.129 (8)	Na4—Mg3 ^{xiii}	3.338 (4)
O72X—Mg6 ⁱⁱⁱ	2.56 (2)	Na5—O11 ^{xvi}	2.507 (4)
O73X—O73X ⁱⁱⁱ	1.279 (14)	Na5—O11 ^{xxiii}	2.507 (4)
O73X—O74X	1.332 (11)	Na5—O31 ^{vii}	2.665 (4)
O73X—P7 ⁱⁱⁱ	1.546 (7)	Na5—O33 ⁱⁱ	2.844 (5)
O73X—Na ^v	2.233 (7)	Na5—O33 ^{xxix}	2.844 (5)
O73X—Mg ^v	2.233 (7)	Na5—O61 ^{vii}	2.915 (6)
O73X—Nd ^{xiv}	2.513 (7)	Na5—O13 ^{xxiii}	2.981 (5)
O74X—Mg6	1.941 (8)	Na5—O13 ^{xvi}	2.981 (5)
O74X—Na ^v	1.954 (8)	Na5—P3 ⁱⁱ	3.269 (3)
O74X—Mg ^v	1.954 (8)	Na5—P3 ^{xxix}	3.269 (3)
O74X—P7 ⁱⁱⁱ	2.032 (7)	Na6—Na6 ^{xxx}	0.649 (11)
P8—P8 ^{vii}	0.304 (16)	Na6—O53 ^{vii}	2.380 (6)
P8—O84X	1.426 (10)	Na6—O71 ^{xi}	2.387 (7)
P8—O82X ^{vii}	1.428 (7)	Na6—O42 ^{xxxi}	2.696 (7)
P8—O84X ^{vii}	1.517 (10)	Na6—O53 ^{xi}	2.699 (6)
P8—O81	1.525 (6)	Na6—P5 ^{xi}	3.106 (5)
P8—O82X	1.540 (7)	Na6—P7 ^{vii}	3.247 (5)
P8—O83X ^{vii}	1.546 (10)	Na6—P7 ^{xi}	3.298 (5)
P8—O83X	1.846 (10)	Na6—Mg7 ^{vii}	3.481 (6)
P8—Na ^{ix}	2.962 (7)	Na6—Mg8 ^{vii}	3.598 (6)
P8—Mg ^{ix}	2.962 (7)	Na6—Mg5 ^{xx}	3.612 (5)
O51—Nd—O32 ⁱ	83.43 (11)	O34 ^{xxii} —Mg6—O72X ⁱⁱⁱ	138.2 (2)
O51—Nd—O32 ⁱⁱ	83.43 (11)	O82X—Mg6—O72X ⁱⁱⁱ	151.8 (3)
O32 ⁱ —Nd—O32 ⁱⁱ	94.83 (17)	O63—Mg7—O22 ^{vii}	107.8 (2)
O51—Nd—O14 ⁱⁱⁱ	69.20 (11)	O63—Mg7—O44 ^{xxii}	126.5 (2)
O32 ⁱ —Nd—O14 ⁱⁱⁱ	87.56 (11)	O22 ^{vii} —Mg7—O44 ^{xxii}	121.83 (17)

O32 ⁱⁱ —Nd—O14 ⁱⁱⁱ	152.10 (10)	O63—Mg7—O81	78.59 (17)
O51—Nd—O14	69.20 (11)	O22 ^{vii} —Mg7—O81	84.7 (2)
O32 ⁱ —Nd—O14	152.10 (10)	O44 ^{xxii} —Mg7—O81	86.87 (19)
O32 ⁱⁱ —Nd—O14	87.56 (11)	O63—Mg7—O42 ^{xxii}	93.50 (19)
O14 ⁱⁱⁱ —Nd—O14	77.97 (14)	O22 ^{vii} —Mg7—O42 ^{xxii}	134.79 (17)
O51—Nd—O73X ^{iv}	142.9 (2)	O44 ^{xxii} —Mg7—O42 ^{xxii}	66.04 (15)
O32 ⁱ —Nd—O73X ^{iv}	62.54 (18)	O81—Mg7—O42 ^{xxii}	139.5 (2)
$O32^{ii}$ —Nd— $O73X^{iv}$	85.0 (2)	O63—Mg7—O21 ^{vii}	83.75 (16)
O14 ⁱⁱⁱ —Nd—O73X ^{iv}	120.1 (2)	O22 ^{vii} —Mg7—O21 ^{vii}	61.68 (13)
O14NdO73X ^{iv}	145.25 (18)	O44 ^{xxii} —Mg7—O21 ^{vii}	135.69 (17)
O51—Nd—O73X ^v	142.9 (2)	O81—Mg7—O21 ^{vii}	134.72 (19)
$O32^{i}$ —Nd— $O73X^{v}$	85.0 (2)	O42 ^{xxii} —Mg7—O21 ^{vii}	82.42 (14)
$O32^{ii}$ —Nd— $O73X^{v}$	62.54 (18)	O14—Mg8—O31	93.14 (15)
O14 ⁱⁱⁱ —Nd—O73X ^v	145.25 (18)	O14—Mg8—O53	113.75 (15)
O14—Nd—O73X ^v	120.1 (2)	O31—Mg8—O53	104.63 (16)
O51—Nd—O13 ⁱⁱⁱ	125.91 (10)	O14—Mg8—O21 ^{vii}	87.71 (16)
O32 ⁱ —Nd—O13 ⁱⁱⁱ	86.19 (11)	O31—Mg8—O21 ^{vii}	167.17 (18)
O32 ⁱⁱ —Nd—O13 ⁱⁱⁱ	150.44 (11)	O53—Mg8—O21 ^{vii}	86.66 (16)
O14 ⁱⁱⁱ —Nd—O13 ⁱⁱⁱ	57.41 (11)	O14—Mg8—O61 ^{vii}	165.25 (16)
O14—Nd—O13 ⁱⁱⁱ	105.15 (11)	O31—Mg8—O61 ^{vii}	85.58 (16)
O73X ^{iv} —Nd—O13 ⁱⁱⁱ	69.2 (2)	O53—Mg8—O61 ^{vii}	80.71 (14)
O73X ^v —Nd—O13 ⁱⁱⁱ	88.21 (19)	O21 ^{vii} —Mg8—O61 ^{vii}	90.34 (17)
O51—Nd—O13	125.91 (10)	O14—Mg8—O62	106.35 (15)
O32 ⁱ —Nd—O13	150.44 (11)	O31—Mg8—O62	86.43 (16)
O32 ⁱⁱ —Nd—O13	86.19 (11)	O53—Mg8—O62	137.41 (16)
O14 ⁱⁱⁱ —Nd—O13	105.15 (11)	O21 ^{vii} —Mg8—O62	81.06 (17)
O14—Nd—O13	57.41 (11)	O61 ^{vii} —Mg8—O62	58.92 (15)
O73X ^{iv} —Nd—O13	88.21 (19)	O74X ^{xxv} —Mg—O83X ^{xxv}	57.2 (3)
O73X ^v —Nd—O13	69.2 (2)	O74X ^{xxv} —Mg—O43	114.5 (2)
O13 ⁱⁱⁱ —Nd—O13	78.96 (13)	O83X ^{xxv} —Mg—O43	170.6 (3)
O11—P1—O12	113.35 (18)	O74X ^{xxv} —Mg—O32	98.0 (2)
O11—P1—O13	110.18 (18)	O83X ^{xxv} —Mg—O32	97.0 (2)
O12—P1—O13	112.99 (18)	O43—Mg—O32	88.34 (15)
O11—P1—O14	108.76 (18)	O74X ^{xxv} —Mg—O73X ^{xxv}	36.3 (3)
O12—P1—O14	109.08 (18)	O83X ^{xxv} —Mg—O73X ^{xxv}	86.3 (3)
O13—P1—O14	101.78 (16)	O43—Mg—O73X ^{xxv}	88.0 (3)
O21—P2—O22	106.5 (2)	O32—Mg—O73X ^{xxv}	72.4 (2)
O21—P2—O23	113.9 (2)	O74X ^{xxv} —Mg—O41	162.5 (3)
O22—P2—O23	110.3 (2)	O83X ^{xxv} —Mg—O41	119.8 (2)
O21—P2—O24	112.1 (2)	O43—Mg—O41	66.51 (14)
O22—P2—O24	111.42 (19)	O32—Mg—O41	99.53 (16)
O23—P2—O24	102.61 (18)	O73X ^{xxv} —Mg—O41	153.8 (3)
O31 ^{xii} —P3—O33	107.5 (2)	O74X ^{xxv} —Mg—O22 ^{xv}	83.3 (2)
O31 ^{xii} —P3—O34	117.7 (2)	O83X ^{xxv} —Mg—O22 ^{xv}	91.7 (2)
O33—P3—O34	102.28 (19)	O43—Mg—O22 ^{xv}	82.45 (14)
O31 ^{xii} —P3—O32	110.1 (2)	O32—Mg—O22 ^{xv}	170.34 (17)
O33—P3—O32	111.7 (2)	$O73X^{xxv}$ —Mg— $O22^{xv}$	104.3 (2)
O34—P3—O32	107.3 (2)	$O41$ —Mg— $O22^{xv}$	79.46 (16)
O41—P4—O42	112.4 (3)	O74X ^{xxv} —Mg—O84X ^{xv}	107.8 (3)

O41—P4—O43	104.8 (2)	O83X ^{xxv} —Mg—O84X ^{xv}	50.7 (3)
O42—P4—O43	114.2 (2)	O43—Mg—O84X ^{xv}	137.0 (3)
O41—P4—O44	113.7 (2)	O32—Mg—O84X ^{xv}	93.5 (3)
O42—P4—O44	104.7 (2)	$O73X^{xxv}$ Mg $O84X^{xv}$	133.4 (3)
O43—P4—O44	107.1 (2)	O41—Mg—O84X ^{xv}	70.8 (3)
O51—P5—O52	112.9 (3)	$O22^{xv}$ —Mg— $O84X^{xv}$	95.2 (3)
O51—P5—O53 ⁱⁱⁱ	109.44 (18)	O41 ^{xxvi} —Na1—O41 ^{vi}	72.3 (2)
O52—P5—O53 ⁱⁱⁱ	108.27 (17)	O41 ^{xxvi} —Na1—O22 ^{xxvii}	140.18 (17)
O51—P5—O53	109.44 (18)	O41 ^{vi} —Na1—O22 ^{xxvii}	74.28 (14)
O52—P5—O53	108.27 (17)	O41 ^{xxvi} —Na1—O22 ^{xxviii}	74.28 (14)
O53 ⁱⁱⁱ —P5—O53	108.4 (3)	O41 ^{vi} —Na1—O22 ^{xxviii}	140.18 (17)
O61 ^{vii} —P6—O61	109.1 (3)	O22 ^{xxvii} —Na1—O22 ^{xxviii}	123.4 (2)
O61 ^{vii} —P6—O62	106.7 (2)	O41 ^{xxvi} —Na1—O23 ^{xxvii}	145.3 (2)
O61—P6—O62	106.7 (2)	O41 ^{vi} —Na1—O23 ^{xxvii}	98.65 (13)
O61 ^{vii} —P6—O63	111.39 (19)	O22 ^{xxvii} —Na1—O23 ^{xxvii}	61.06 (12)
O61—P6—O63	111.39 (19)	O22 ^{xxviii} —Na1—O23 ^{xxvii}	121.17 (16)
O62—P6—O63	111.2 (3)	O41 ^{xxvi} —Na1—O23 ^{xxviii}	98.65 (14)
O73X—P7—O72X ⁱⁱⁱ	126.7 (7)	O41 ^{vi} —Na1—O23 ^{xxviii}	145.3 (2)
O73X—P7—O72X	130.4 (5)	O22 ^{xxvii} —Na1—O23 ^{xxviii}	121.17 (16)
O73X—P7—O71	117.0 (4)	O22 ^{xxviii} —Na1—O23 ^{xxviii}	61.06 (12)
O72X ⁱⁱⁱ —P7—O71	115.9 (5)	O23 ^{xxvii} —Na1—O23 ^{xxviii}	69.34 (17)
O72X—P7—O71	111.7 (5)	O41 ^{xxvi} —Na1—O81 ^{xxvii}	102.98 (19)
O72X ⁱⁱⁱ —P7—O74X	96.5 (11)	O41 ^{vi} —Na1—O81 ^{xxvii}	102.98 (19)
O72X—P7—O74X	111.4 (10)	O22 ^{xxvii} —Na1—O81 ^{xxvii}	64.39 (11)
O71—P7—O74X	114.9 (3)	O22 ^{xxviii} —Na1—O81 ^{xxvii}	64.39 (11)
O72X ⁱⁱⁱ —P7—O73X ⁱⁱⁱ	118.5 (9)	O23 ^{xxvii} —Na1—O81 ^{xxvii}	111.76 (16)
O72X—P7—O73X ⁱⁱⁱ	107.2 (9)	O23 ^{xxviii} —Na1—O81 ^{xxvii}	111.76 (16)
O71—P7—O73X ⁱⁱⁱ	104.3 (3)	O43 ^{iv} —Na2—O43 ^v	66.40 (17)
O74X—P7—O73X ⁱⁱⁱ	106.6 (4)	$O43^{iv}$ —Na2—O44 iv	58.49 (12)
O73X—P7—O74X ⁱⁱⁱ	92.9 (4)	O43 ^v —Na2—O44 ^{iv}	111.21 (16)
O72X ⁱⁱⁱ —P7—O74X ⁱⁱⁱ	91.4 (11)	$O43^{iv}$ —Na2—O44 ^v	111.21 (16)
O72X—P7—O74X ⁱⁱⁱ	76.0 (10)	O43 ^v —Na2—O44 ^v	58.49 (12)
O71—P7—O74X ⁱⁱⁱ	92.1 (2)	$O44^{iv}$ —Na2—O44 ^v	107.7 (2)
O74X—P7—O74X ⁱⁱⁱ	144.3 (5)	O43 ^{iv} —Na2—O34 ^{iv}	108.65 (10)
O84X—P8—O82X ^{vii}	121.1 (5)	O43 ^v —Na2—O34 ^{iv}	165.5 (2)
$P8^{vii}$ — $P8$ — $O84X^{vii}$	66.9 (4)	O44 ^{iv} —Na2—O34 ^{iv}	74.65 (12)
O82X ^{vii} —P8—O84X ^{vii}	130.2 (5)	$O44^{v}$ —Na2—O34 ^{iv}	133.75 (17)
O84X—P8—O81	117.6 (5)	$O43^{iv}$ —Na2—O34 ^v	165.5 (2)
O82X ^{vii} —P8—O81	116.1 (4)	O43 ^v —Na2—O34 ^v	108.65 (10)
O84X ^{vii} —P8—O81	112.1 (5)	$O44^{iv}$ —Na2—O34 ^v	133.75 (17)
O84X—P8—O82X	128.5 (5)	O44 ^v —Na2—O34 ^v	74.65 (12)
O84X ^{vii} —P8—O82X	108.8 (6)	$O34^{iv}$ —Na2—O34 ^v	72.59 (16)
O81—P8—O82X	109.7 (4)	$O43^{iv}$ —Na2—O32 ^v	111.67 (17)
O84X—P8—O83X ^{vii}	77.2 (5)	O43 ^v —Na2—O32 ^v	69.32 (12)
O82X ^{vii} —P8—O83X ^{vii}	67.4 (4)	O44 ^{iv} —Na2—O32 ^v	166.14 (17)
O84X ^{vii} —P8—O83X ^{vii}	111.5 (5)	O44 ^v —Na2—O32 ^v	84.56 (11)
O81—P8—O83X ^{vii}	104.7 (4)	O34 ^{iv} —Na2—O32 ^v	101.72 (15)
O82X—P8—O83X ^{vii}	110.0 (4)	O34 ^v —Na2—O32 ^v	54.69 (11)
O84X—P8—O83X	100.6 (5)	O43 ^{iv} —Na2—O32 ^{iv}	69.32 (12)

O82X ^{vii} —P8—O83X	100.3 (4)	O43 ^v —Na2—O32 ^{iv}	111.67 (17)
O84X ^{vii} —P8—O83X	66.1 (5)	O44 ^{iv} —Na2—O32 ^{iv}	84.56 (11)
O81—P8—O83X	91.8 (4)	O44 ^v —Na2—O32 ^{iv}	166.14 (17)
O82X—P8—O83X	57.6 (4)	O34 ^{iv} —Na2—O32 ^{iv}	54.69 (11)
O83X ^{vii} —P8—O83X	162.4 (5)	O34 ^v —Na2—O32 ^{iv}	101.72 (15)
O24 ^{xviii} —Mg1—O24 ^{vii}	86.12 (19)	O32 ^v —Na2—O32 ^{iv}	82.55 (18)
$O24^{xviii}$ Mg1 $O43^{iv}$	87.97 (13)	O43 ^{iv} —Na2—O82X ^{vi}	124.47 (17)
O24 ^{vii} —Mg1—O43 ^{iv}	151.84 (19)	O43 ^v —Na2—O82X ^{vi}	140.8 (2)
$O24^{xviii}$ Mg1 $O43^{v}$	151.84 (19)	O44 ^{iv} —Na2—O82X ^{vi}	65.98 (16)
$O24^{vii}$ Mg1 $O43^{v}$	87.97 (13)	O44 ^v —Na2—O82X ^{vi}	84.37 (18)
O43 ^{iv} —Mg1—O43 ^v	84.4 (2)	O34 ^{iv} —Na2—O82X ^{vi}	53.55 (16)
O24 ^{xviii} —Mg1—O71	99.48 (16)	O34 ^v —Na2—O82X ^{vi}	68.42 (16)
O24 ^{vii} —Mg1—O71	99.48 (16)	O32 ^v —Na2—O82X ^{vi}	122.98 (17)
O43 ^{iv} —Mg1—O71	108.65 (16)	O32 ^{iv} —Na2—O82X ^{vi}	106.98 (16)
O43 ^v —Mg1—O71	108.65 (16)	O43 ^{iv} —Na2—O82X ^{xxvi}	140.8 (2)
O62—Mg2—O52 ^{viii}	158.0 (2)	O43 ^v —Na2—O82X ^{xxvi}	124.47 (17)
O62—Mg2—O23	101.27 (16)	O44 ^{iv} —Na2—O82X ^{xxvi}	84.37 (18)
O52 ^{viii} —Mg2—O23	94.54 (15)	O44 ^v —Na2—O82X ^{xxvi}	65.98 (16)
O62—Mg2—O23 ^{vii}	101.27 (16)	O34 ^{iv} —Na2—O82X ^{xxvi}	68.42 (16)
O52 ^{viii} —Mg2—O23 ^{vii}	94.54 (15)	O34 ^v —Na2—O82X ^{xxvi}	53.55 (16)
O23—Mg2—O23 ^{vii}	87.7 (2)	O32 ^v —Na2—O82X ^{xxvi}	106.98 (16)
O62—Mg2—O12	87.15 (16)	O32 ^{iv} —Na2—O82X ^{xxvi}	122.98 (17)
O52 ^{viii} —Mg2—O12	75.59 (14)	O82X ^{vi} —Na2—O82X ^{xxvi}	22.1 (3)
O23—Mg2—O12	169.17 (16)	O24 ^{vii} —Na3—O24 ^{xviii}	72.97 (18)
O23 ^{vii} —Mg2—O12	97.46 (13)	O24 ^{vii} —Na3—O14 ⁱⁱⁱ	171.6 (2)
O62—Mg2—O12 ^{vii}	87.15 (16)	O24 ^{xviii} —Na3—O14 ⁱⁱⁱ	101.77 (11)
O52 ^{viii} —Mg2—O12 ^{vii}	75.59 (14)	O24 ^{vii} —Na3—O14	101.77 (11)
O23—Mg2—O12 ^{vii}	97.46 (13)	O24 ^{xviii} —Na3—O14	171.6 (2)
O23 ^{vii} —Mg2—O12 ^{vii}	169.17 (16)	O14 ⁱⁱⁱ —Na3—O14	82.65 (18)
O12—Mg2—O12 ^{vii}	75.97 (18)	O24 ^{vii} —Na3—O11 ⁱⁱⁱ	122.51 (19)
O52—Mg3—O82X ^{xxi}	161.1 (2)	O24 ^{xviii} —Na3—O11 ⁱⁱⁱ	71.46 (12)
O52—Mg3—O82X ^{xxii}	161.1 (2)	O14 ⁱⁱⁱ —Na3—O11 ⁱⁱⁱ	60.14 (11)
O82X ^{xxi} —Mg3—O82X ^{xxii}	31.1 (4)	O14—Na3—O11 ⁱⁱⁱ	116.87 (17)
O52—Mg3—O34 ⁱ	100.35 (15)	O24 ^{vii} —Na3—O11	71.46 (12)
O82X ^{xxi} —Mg3—O34 ⁱ	74.8 (2)	O24 ^{xviii} —Na3—O11	122.51 (19)
O82X ^{xxii} —Mg3—O34 ⁱ	98.4 (2)	O14 ⁱⁱⁱ —Na3—O11	116.87 (17)
O52—Mg3—O34 ⁱⁱ	100.35 (15)	O14—Na3—O11	60.14 (11)
O82X ^{xxi} —Mg3—O34 ⁱⁱ	98.4 (2)	O11 ⁱⁱⁱ —Na3—O11	91.98 (18)
O82X ^{xxii} —Mg3—O34 ⁱⁱ	74.8 (2)	O12 ^{xv} —Na4—O12 ^{xxv}	68.10 (16)
O34 ⁱ —Mg3—O34 ⁱⁱ	99.4 (2)	O12 ^{xv} —Na4—O62 ^{xv}	71.64 (14)
O52—Mg3—O12 ^{xxiii}	77.01 (14)	O12 ^{xxv} —Na4—O62 ^{xv}	71.64 (14)
O82X ^{xxi} —Mg3—O12 ^{xxiii}	104.0 (2)	O12 ^{xv} —Na4—O31 ^{xxv}	146.90 (16)
O82X ^{xxii} —Mg3—O12 ^{xxiii}	84.9 (2)	O12 ^{xxv} —Na4—O31 ^{xxv}	87.77 (11)
O34 ⁱ —Mg3—O12 ^{xxiii}	168.63 (15)	O62 ^{xv} —Na4—O31 ^{xxv}	79.58 (13)
O34 ⁱⁱ —Mg3—O12 ^{xxiii}	91.93 (13)	O12 ^{xv} —Na4—O31 ^{xv}	87.77 (11)
O52—Mg3—O12 ^{xix}	77.01 (14)	O12 ^{xxv} —Na4—O31 ^{xv}	146.90 (16)
O82X ^{xxi} —Mg3—O12 ^{xix}	84.9 (2)	$O62^{xv}$ —Na4—O31 xv	79.58 (13)
O82X ^{xxii} —Mg3—O12 ^{xix}	104.0 (2)	O31 ^{xxv} —Na4—O31 ^{xv}	103.03 (19)
O34 ⁱ —Mg3—O12 ^{xix}	91.93 (13)	O12 ^{xv} —Na4—O84X	101.0 (2)

O34 ⁱⁱ —Mg3—O12 ^{xix}	168.63 (15)	O12 ^{xxv} —Na4—O84X	111.8 (2)
O12 ^{xxiii} —Mg3—O12 ^{xix}	76.70 (17)	O62 ^{xv} —Na4—O84X	170.47 (19)
O33 ^{xxi} —Mg4—O33 ^{xxii}	92.9 (2)	O31 ^{xxv} —Na4—O84X	109.1 (2)
O33 ^{xxi} —Mg4—O41 ^{xxi}	88.36 (17)	O31 ^{xv} —Na4—O84X	94.3 (2)
O33 ^{xxii} —Mg4—O41 ^{xxi}	173.5 (2)	O12 ^{xv} —Na4—O84X ^{vii}	111.8 (2)
O33 ^{xxi} —Mg4—O41 ^{xxii}	173.5 (2)	O12 ^{xxv} —Na4—O84X ^{vii}	101.0 (2)
O33 ^{xxii} —Mg4—O41 ^{xxii}	88.36 (17)	O62 ^{xv} —Na4—O84X ^{vii}	170.47 (18)
O41 ^{xxi} —Mg4—O41 ^{xxii}	89.7 (3)	O31 ^{xxv} —Na4—O84X ^{vii}	94.3 (2)
O33 ^{xxi} —Mg4—O72X	85.5 (6)	O31 ^{xv} —Na4—O84X ^{vii}	109.1 (2)
O33 ^{xxii} —Mg4—O72X	93.5 (6)	O84X—Na4—O84X ^{vii}	18.5 (4)
O41 ^{xxi} —Mg4—O72X	93.0 (6)	O11 ^{xvi} —Na5—O11 ^{xxiii}	97.14 (19)
O41 ^{xxii} —Mg4—O72X	100.8 (6)	O11 ^{xvi} —Na5—O31	159.2 (2)
O33 ^{xxi} —Mg4—O72X ⁱⁱⁱ	93.5 (6)	O11 ^{xxiii} —Na5—O31	76.89 (11)
O33 ^{xxii} —Mg4—O72X ⁱⁱⁱ	85.5 (6)	O11 ^{xvi} —Na5—O31 ^{vii}	76.89 (11)
O41 ^{xxi} —Mg4—O72X ⁱⁱⁱ	100.8 (6)	O11 ^{xxiii} —Na5—O31 ^{vii}	159.2 (2)
O41 ^{xxii} —Mg4—O72X ⁱⁱⁱ	93.0 (6)	O31—Na5—O31 ^{vii}	101.6 (2)
072X—Mg4—072X ⁱⁱⁱ	11.1 (15)	O11 ^{xvi} —Na5—O33 ⁱⁱ	147.69 (19)
O33 ^{xxi} —Mg4—O84X ^{xix}	102.3 (2)	O11 ^{xxiii} —Na5—O33 ⁱⁱ	95.00 (11)
O33 ^{xxii} —Mg4—O84X ^{xix}	87.6 (2)	O31—Na5—O33 ⁱⁱ	53.08 (11)
O41 ^{xxi} —Mg4—O84X ^{xix}	85.9 (3)	O31 ^{vii} —Na5—O33 ⁱⁱ	100.52 (15)
O41 ^{xxii} —Mg4—O84X ^{xix}	71.3 (3)	O11 ^{xvi} —Na5—O33 ^{xxix}	95.00 (11)
O72X—Mg4—O84X ^{xix}	172.1 (5)	O11 ^{xxiii} —Na5—O33 ^{xxix}	147.69 (19)
O72X ⁱⁱⁱ —Mg4—O84X ^{xix}	163.0 (7)	O31—Na5—O33 ^{xxix}	100.52 (15)
O33 ^{xxi} —Mg4—O84X ^{xxiii}	87.6 (2)	O31 ^{vii} —Na5—O33 ^{xxix}	53.08 (11)
O33 ^{xxii} —Mg4—O84X ^{xxiii}	102.3 (2)	O33 ⁱⁱ —Na5—O33 ^{xxix}	60.72 (15)
O41 ^{xxi} —Mg4—O84X ^{xxiii}	71.3 (3)	O11 ^{xvi} —Na5—O61	62.08 (13)
O41 ^{xxii} —Mg4—O84X ^{xxiii}	85.9 (3)	O11 ^{xxiii} —Na5—O61	99.82 (18)
072X—Mg4—084X ^{xxiii}	163.0 (7)	O31—Na5—O61	98.93 (17)
O72X ⁱⁱⁱ —Mg4—O84X ^{xxiii}	172.1 (5)	O31 ^{vii} —Na5—O61	59.67 (13)
O84X ^{xix} —Mg4—O84X ^{xxiii}	20.3 (4)	O33 ⁱⁱ —Na5—O61	144.13 (18)
O61 ^{xxiv} —Mg5—O11 ^{vii}	87.23 (15)	O33 ^{xxix} —Na5—O61	112.32 (12)
O61 ^{xxiv} —Mg5—O53 ^{viii}	81.09 (15)	O11 ^{xvi} —Na5—O61 ^{vii}	99.82 (18)
O11 ^{vii} —Mg5—O53 ^{viii}	105.84 (15)	O11 ^{xxiii} —Na5—O61 ^{vii}	62.08 (13)
$O61^{xxiv}$ —Mg5—O42 ^{ix}	86.34 (19)	O31—Na5—O61 ^{vii}	59.67 (13)
O11 ^{vii} —Mg5—O42 ^{ix}	166.46 (18)	O31 ^{vii} —Na5—O61 ^{vii}	98.93 (17)
O53 ^{viii} —Mg5—O42 ^{ix}	84.92 (16)	O33 ⁱⁱ —Na5—O61 ^{vii}	112.32 (12)
O61 ^{xxiv} —Mg5—O23	174.75 (16)	O33 ^{xxix} —Na5—O61 ^{vii}	144.13 (18)
O11 ^{vii} —Mg5—O23	87.55 (13)	O61—Na5—O61 ^{vii}	50.43 (16)
O53 ^{viii} —Mg5—O23	100.94 (14)	O11 ^{xvi} —Na5—O13 ^{xxiii}	102.48 (15)
O42 ^{ix} —Mg5—O23	98.63 (18)	O11 ^{xxiii} —Na5—O13 ^{xxiii}	53.73 (12)
O61 ^{xxiv} —Mg5—O24	111.86 (16)	O31—Na5—O13 ^{xxiii}	90.11 (11)
O11 ^{vii} —Mg5—O24	84.91 (13)	O31 ^{vii} —Na5—O13 ^{xxiii}	146.76 (19)
O53 ^{viii} —Mg5—O24	163.94 (15)	O33 ⁱⁱ —Na5—O13 ^{xxiii}	62.13 (12)
O42 ^{ix} —Mg5—O24	86.44 (15)	O33 ^{xxix} —Na5—O13 ^{xxiii}	94.41 (16)
O23—Mg5—O24	67.04 (12)	O61—Na5—O13 ^{xxiii}	149.41 (17)
O74X—Mg6—O13 ^{xxv}	89.1 (2)	O61 ^{vii} —Na5—O13 ^{xxiii}	113.70 (11)
O74X—Mg6—O83X	56.3 (3)	O11 ^{xvi} —Na5—O13 ^{xvi}	53.73 (12)
O13 ^{xxv} —Mg6—O83X	92.0 (2)	O11 ^{xxiii} —Na5—O13 ^{xvi}	102.48 (15)
O74X—Mg6—O44 ^{xxii}	86.4 (2)	O31—Na5—O13 ^{xvi}	146.76 (19)

O13 ^{xxv} —Mg6—O44 ^{xxii}	174.7 (2)	O31 ^{vii} —Na5—O13 ^{xvi}	90.11 (11)
O83X—Mg6—O44 ^{xxii}	87.8 (2)	O33 ⁱⁱ —Na5—O13 ^{xvi}	94.41 (16)
O74X—Mg6—O33 ^{xxii}	128.5 (3)	O33 ^{xxix} —Na5—O13 ^{xvi}	62.13 (12)
O13 ^{xxv} —Mg6—O33 ^{xxii}	91.79 (15)	O61—Na5—O13 ^{xvi}	113.70 (11)
O83X—Mg6—O33 ^{xxii}	173.9 (2)	O61 ^{vii} —Na5—O13 ^{xvi}	149.41 (17)
O44 ^{xxii} —Mg6—O33 ^{xxii}	88.92 (16)	O13 ^{xxiii} —Na5—O13 ^{xvi}	65.17 (14)
O74X—Mg6—O34 ^{xxii}	164.9 (3)	Na6 ^{xxx} —Na6—O53 ^{vii}	112.87 (15)
O13 ^{xxv} —Mg6—O34 ^{xxii}	88.80 (15)	Na6 ^{xxx} —Na6—O71 ^{xi}	82.19 (13)
O83X—Mg6—O34 ^{xxii}	108.8 (2)	O53 ^{vii} —Na6—O71 ^{xi}	149.5 (3)
O44 ^{xxii} —Mg6—O34 ^{xxii}	96.32 (17)	Na6 ^{xxx} —Na6—O42 ^{xxxi}	147.02 (18)
O33 ^{xxii} —Mg6—O34 ^{xxii}	66.49 (13)	O53 ^{vii} —Na6—O42 ^{xxxi}	67.95 (17)
O74X—Mg6—O82X	99.5 (3)	O71 ^{xi} —Na6—O42 ^{xxxi}	114.2 (2)
O13 ^{xxv} —Mg6—O82X	98.5 (2)	Na6 ^{xxx} —Na6—O53 ^{xi}	54.33 (13)
O83X—Mg6—O82X	43.6 (2)	O53 ^{vii} —Na6—O53 ^{xi}	58.54 (18)
O44 ^{xxii} —Mg6—O82X	85.0 (2)	O71 ^{xi} —Na6—O53 ^{xi}	129.4 (3)
O33 ^{xxii} —Mg6—O82X	131.0 (2)	O42 ^{xxxi} —Na6—O53 ^{xi}	116.5 (2)
O34 ^{xxii} —Mg6—O82X	66.03 (19)	Na6 ^{xxx} —Na6—O21	138.10 (16)
O74X—Mg6—O72X ⁱⁱⁱ	57.0 (3)	O53 ^{vii} —Na6—O21	66.58 (18)
O13 ^{xxv} —Mg6—O72X ⁱⁱⁱ	96.6 (4)	O71 ^{xi} —Na6—O21	84.4 (2)
O83X—Mg6—O72X ⁱⁱⁱ	112.4 (3)	O42 ^{xxxi} —Na6—O21	74.1 (2)
O44 ^{xxii} —Mg6—O72X ⁱⁱⁱ	78.6 (4)	O53 ^{xi} —Na6—O21	109.8 (2)
O33 ^{xxii} —Mg6—O72X ⁱⁱⁱ	71.9 (2)		

Symmetry codes: (i) –x, y, z–1; (ii) x, y, z–1; (iii) –x, y, z; (iv) –x, –y+1, z–1/2; (v) x, –y+1, z–1/2; (vi) x–1/2, y–1/2, z; (vii) –x+1, y, z; (viii) x+1/2, y–1/2, z; (iii) –x+1, y, z; (viii) x+1/2, -y+1/2, z-1/2; (xi) x+1, y, z; (xii) x, y, z+1; (xiii) –x+1/2, –y+3/2, z+1/2; (xiv) –x, –y+1, z+1/2; (xv) –x+1, –y+1, z+1/2; (xv) x+1/2, y+1/2, z; (xvii) x–1/2, –y+3/2, z+1/2; (xvii) x–1/2, y+1/2, z; (xxi) x–1/2, –y+3/2, z-1/2; (xxii) –x+1/2, –y+3/2, z-1/2; (xxii) –x+1/2, –y+3/2, z-1/2; (xxii) –x+1/2, -y+3/2, z-1/2; (xxii) –x+1/2, -y+1/2, z; (xxii) –x+1/2, -y+3/2, z-1/2.